
Convolutional Neural Networks

Notes by José A. Espiño P. 1

Summer Semester 2022–2023

1The content in these notes is sourced from what was covered in the MOOG the document is named
after. I claim no autorship over any of the contents herein.

Contents

1 Foundations of Convolutional Neural Networks 2

2 Deep Convolutional Models: Case Studies 6
2.1 Practical Advice . 9

3 Object Detection 10
3.1 Convolutional Implementation of Sliding Windows 11

4 Special Applications: Face Recognition & Neural Style Transfer 15
4.1 Neural Style Transfer . 17

1 Foundations of Convolutional Neural Networks

Computer Vision is one of the areas where deep learning has had the most impact. It is the
art of giving machines the ability to see. It is a very active area of research and has many ap-
plications. One of the challenges of computer vision is that the input is a 3D array of pixels.
This makes it hard to use a standard neural network architecture, especially considering that
the input size can get big. For example, a 1000×1000×3 pixel image would have 3 million
input features. This would make the network too big and computationally expensive. Also, it
would be hard to train because of the large number of parameters.
To adapt to this issue, we need to improve on the convolution operation, which is the core of
convolutional neural networks. This operation consists in doing an element-wise multiplica-
tion of two matrices and then summing the results. The convolution of two matrices f and g
is denoted by f ∗ g and is defined as follows:

(f ∗ g)(i , j) =∑
m

∑
n

f (m,n)g (i −m, j −n)

In the context of computer vision, we can think of f as the input image and g as the filter or
kernel, which is a small matrix that we apply to the input image. The output of the convolu-
tion is called the feature map. The filter is usually a small matrix, for example, a 3×3 matrix.
Since the filter is usually smaller than the input image, the feature map will be smaller than
the input image.
This operation can be visualised as follows:

Figure 1: Convolution operation, sourced from this post.

2

https://poojamahajan5131.medium.com/image-filters-with-convolutions-9104bba1ce12

Depending on the kernel values, we will be able to detect different features in the image.
The core idea of convolutional neural networks is to learn the values of the kernel—as op-
posed to manually researching which kernels are most effective for which features. This is
done by training the network on a large number of images.
The convolution operation is also used in other areas, such as natural language processing.
In this case, the input is a sequence of words, and the filter is a sequence of words that we
want to detect. For example, we could have a filter that detects the word “cat” in a sentence.
Padding is a basic modification to the convolution operation that allows us to control the
size of the output. It consists in adding zeros around the input image, so that the input gets
larger—and thus the output gets larger as well.
Keeping the size of the output the same as the non–padded size of the input allows us to stack
multiple convolutional layers on top of each other. Without padding, our image would get
progressively smaller as we pass it through more convolutional layers. Two common padding
settings are same and valid. In the same setting, we add enough padding so that the output
has the same size as the input. In the valid setting, we add no padding, so the output is
forcibly smaller than the input.

Another part of the convolutional neural network puzzle is the stride. This is the number
of pixels that we shift the filter each time we apply it to the input image. The default stride is
1, but we can increase it to make the output smaller.
Now, given an n ×n input image, an f × f filter, a stride of s and a padding of p, the output
size is given by the following formula:

n +2p − f

s
+1× n +2p − f

s
+1

Most images are three–dimensional instead of two–dimensional. This means that they have
a depth dimension, which is the number of channels. For example, a color image has three
channels: red, green and blue. The idea of a convolution can also be extended to this repre-
sentation of an image. In this case, the filter is also three–dimensional, and it will be applied
on each channel of the input image. The result of each convolution will be summed to pro-
duce a single value for each pixel in the output.

Usually, when analysing a picture, we will convolute the input with several kernels, and
then add a bias term (a real number) to each element in the feature map. Once this is done,
we normally pass the result of this addition into an activation function (e.g. ReLU) to get the
final output of the layer.

All of this covered, let us see how to implement one layer of a convolutional network. Let l
be a convolutional layer, f [l] be the filter size, p [l] the padding, and s[l] the stride. Let n[l−1]

H ×
n[l−1]

W ×n[l−1]
C be the dimensions of the input, and n[l]

H ×n[l]
W ×n[l]

C be the dimensions of the

3

output. The way we calculate the dimensions of the output is as follows:

n[l]
H =

⌊
n[l−1]

H +2p [l] − f [l]

s[l]
+1

⌋

n[l]
W =

⌊
n[l−1]

W +2p [l] − f [l]

s[l]
+1

⌋
n[l]

C = n[l−1]
C

Then, the activations will be given by:

A[l]−> m ×n[l]
H ×n[l]

W ×n[l]
C

Furthermore, the weights and biases will be defined as:

W [l]−> f [l] × f [l] ×n[l−1]
C ×n[l]

C

b[l]−> n[l]
C

Now take a look at this sample implementation of a simple ConvNet:

Figure 2: Sample implementation of a simple ConvNet, sourced from this lecture.

Other than convolutional layers, ConvNets also use pooling layers. These layers reduce the
size of the input by applying a function to a small window of the input. The most common
pooling function is the max pooling function, which takes the maximum value in the window.
Check out this example of max pooling:

Figure 3: Max pooling, sourced from this lecture.

4

https://www.coursera.org/learn/convolutional-neural-networks/lecture/A9lXL/simple-convolutional-network-example
https://www.coursera.org/learn/convolutional-neural-networks/lecture/6dDj7/pooling-layers

Max pooling has two main parameters: the stride (s) and the filter size (f). These define
how much the image will be reduced. The idea of max pooling is to reduce the size of the
input, and thus the number of parameters and computations in the network. This helps us to
avoid overfitting. In fact, a benefit of max pooling is that, in spite of it having two parameters,
these are set—there is nothing for it to learn. Similar to convolutional layers, pooling layers
can be three–dimensional.
Another type of pooling is average pooling, which takes the average of the values in the win-
dow instead of the maximum. This is not used as often as max pooling, but it can be useful in
some cases, such as when we want to get a more smooth output or deep inside the network
where we want to collapse the representation of the input.
Fully connected layers are also used in ConvNets. These are the same as the ones we have
seen in deep neural networks. They are used to connect the convolutional layers to the out-
put layer.
Implementing pooling and fully connected layers, a typical neural network looks like this:

Figure 4: Typical ConvNet, sourced from this lecture.

This table presents the shape and size of the activation at each layer:

Figure 5: Shape and size of the activation at each layer, sourced from this lecture.

The two main reasons why convolutions are desirable is the fact parameters are shared and
the sparsity of their connections. This means that the number of parameters is reduced, and
that the network is more robust to changes in the input.
When it comes to training, it is similar to what we have seen for other types of neural net-
works: we calculate the cost and try to optimise the values of the weights so as to minimise

5

https://www.coursera.org/learn/convolutional-neural-networks/lecture/uRYL1/cnn-example
https://www.coursera.org/learn/convolutional-neural-networks/lecture/uRYL1/cnn-example

the cost function. Further in this document, we will cover some ways to achieve this in prac-
tise.

2 Deep Convolutional Models: Case Studies

First, we will study some of the classic neural network architectures:

1. LeNet-5:
This is one of the first ConvNets, and it was used to read zip codes, digits, etc. It has
two convolutional layers, two average pooling layers, and three fully connected layers.
It is not used as much today, but it is still a good example of a ConvNet. The following
image illustrates this:

Figure 6: LeNet-5, sourced from this website.

The important thing to notice in this architecture is that as you go deeper in the net-
work, the number of channels increases while the size of the image decreases.
Another feature of this architecture is the arrangement of convolutional layer(s), fol-
lowed by pooling layers, followed by convolutional layer(s), and so on until we reach
the fully connected layers. This is a common pattern in ConvNets.

2. AlexNet:
This is one of the most influential ConvNets. It was used to win the ImageNet compe-
tition in 2012. It has eight layers: five convolutional layers and three fully connected
layers. It also uses ReLU as the activation function. The following image illustrates this:

Figure 7: AlexNet, sourced from this website.

This network had a lot of similarities to LeNet-5, but it was much larger and deeper. It
also used ReLU instead of sigmoid as the activation function. You are encouraged to
read the original paper, which is available here.

6

https://datahacker.rs/deep-learning-lenet-5-architecture/
https://datahacker.rs/deep-learning-alexnet-architecture/
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

3. VGG-16:
This is another influential ConvNet. It was used to win the ImageNet competition in
2014. It has 16 layers: 13 convolutional layers and three fully connected layers. It also
uses ReLU as the activation function. The following image illustrates this:

Figure 8: VGG-16, sourced from this website.

The 16 in the name of the network refers to the number of layers. As you can see in the
diagram, it is a pretty uniform network, where the number of filters keeps doubling as
we go deeper in the network.

Looking beyond these classic networks, let us take a look at two of the most influential mod-
ern network architectures: ResNets:
ResNets are built out of residual blocks, which are blocks that have a skip connection. This
means that, instead of passing the activation of a layer through the entire path leading to a
layer far away, we pass it directly to that layer, linearly adding it to the activation of the layer
that is far away before applying the activation function. In a ResNet, it is common to see sev-
eral residual blocks stacked together, so that information travels deeper into the network.
The reason why ResNets are useful is because they allow us to train very deep networks. In
fact, the authors of the original paper trained a 152-layer network. This is possible because
the skip connections allow the network to learn identity functions, which are easier to learn
than the functions that a network without skip connections would have to learn.
In the cases where the activation of a layer is not the same size as the activation of the layer
that is far away, we can use a convolutional layer to change the size of the activation. This is
called a projection shortcut.

An important idea when designing ConvNet architectures is one–by–one convolutions.
These are convolutions with a kernel size of 1 × 1. They are useful because they allow us
to change the number of channels, and thus control the number of parameters in the net —
the number of channels in the output is equal to the number of filters in the convolution.

Inception Network:
Inception networks are built out of inception blocks, which are blocks that have several par-

7

https://medium.com/mlearning-ai/an-overview-of-vgg16-and-nin-models-96e4bf398484

allel paths. Each path has a different type of convolutional layer. The output of each path
is concatenated together to form the output of the inception block. In a typical inception
network, it is common to see several inception blocks stacked together, so that information
travels deeper into the network. The advantage of this is that, instead of having to choose the
kernel size for each layer, you apply several in parallel and let the network learn which ones
it needs and in what proportion.
When it comes to kernels with a big size, and thus a big amount of multiplications performed,
the computational cost can be very high. To solve this problem, we can use a 1×1 convolu-
tion to reduce the number of channels before applying the bigger convolution. This is called
a bottleneck layer. Inception networks are organised in modules, where each module has
several inception blocks. The following image illustrates this:

Figure 9: Inception network, sourced from this lecture.

An entire network can look like this:

Figure 10: Inception network, sourced from this lecture.

Another foundational convnet architecture used in computer vision is MobileNet — a less
computationally–expensive alternative to the architectures presented above. In regular con-
volutions, the computational cost can be defined as number of filer parameters× number of filter positions×
number of filters. In contrast to normal convolutions, depthwise separable convolutions
have two steps:

1. A depthwise convolution, which applies a single filter to each input channel. The com-
putational cost of this is number of filter parameters× number of filter positions× number of filters

8

https://www.coursera.org/learn/convolutional-neural-networks/lecture/piR0x/inception-network
https://www.coursera.org/learn/convolutional-neural-networks/lecture/piR0x/inception-network

2. A pointwise convolution, which applies a 1 × 1 convolution to combine the output
of the previous step. The computational cost of this is number of filter parameters×
number of filter positions× number of filters

This is more economic than regular convolutions, since the number of filter positions is much
smaller than the number of input channels. The idea of MobileNet is to use depthwise sep-
arable convolutions instead of regular convolutions. This reduces the computational cost of
the network, at the expense of a slight decrease in accuracy.
Another advancemenet in MobileNets is MobileNetv2. This is a variation of MobileNet that
uses a different type of bottleneck, containing a residual connection and an expansion step
that increases the number of channels before applying the depthwise convolution. This can
be seen in the following image:

Figure 11: MobileNetv2, sourced from this lecture.

The expansion generates a larger image within the bottleneck, which in turn allows for the
learning of a richer function. Since on mobile devices we have a limited amount of mem-
ory, the pointwise convolution is used to reduce the number of channels back to the original
number—thus freeing up the memory for use.

2.1 Practical Advice

Sometimes, it is hard to replicate the results of research papers. This is because the authors of
the papers do not always provide all the details of the implementation. Luckily, open–source
implementations of the most popular architectures are available online. Platforms such as
Github are a great place to find these implementations.
Usually, we download pre–trained models and use them as a starting point (pre–training)for
our own models. This is called transfer learning. We achieve this by downloading the weights
of a model that already exist, eliminate the last layer of the model, freeze the model so we do
not change the weights, and then add our own layers on top of the model. This technique is
especially helpful when we do not have a lot of data.
When we have a lot of training data available, we can opt to just freeze portions of the model,
and train the rest. This is called fine–tuning.
If you have a lot of data, it is also possible to train a model from scratch. This is optly called
training from scratch.

9

https://www.coursera.org/learn/convolutional-neural-networks/lecture/9BqTk/mobilenet-architecture
https://github.com

A technique that is often used to obtain more data is called data augmentation. There are
several techniques to achieve this:

• Mirroring

• Random cropping

• Rotation

• Shearing

• Local warping

• Color shifting

• PCA color augmentation

3 Object Detection

The first important concept we need to understand is object localization, the task of finding
the location of an object in an image. This is usually done by drawing a bounding box around
the object. The difference between localization and detection is that the former only finds
the location of one object, while the latter finds the location of multiple objects.
A way localization is achieved is by passing the image through a CNN and then using a fully–connected
layer to predict the bounding box. This layer will output four numbers: bx ,by ,bh ,bw , which
are used to define the bounding box, and a class label. In short, the output of the fully–connected
layer is a vector of the form: 

pc

bx

by

bh

bw

c1

c2
...

cn


Where pc is the probability that there is an object in the image, bx ,by ,bh ,bw are the coor-
dinates of the bounding box, and c1,c2, . . . ,cn are the probabilities that the object belongs to
each of the n classes.
The loss function will be determined by the value of pc :

• If pc = 1, then the loss function will be the sum of the squared differences between the
predicted and actual values of bx ,by ,bh ,bw and the class label.

• If pc = 0, then the loss function will be the squared difference between the predicted
and actual value of pc .

10

The loss function is then summed over all the training examples. In this explanation, we use
the squared difference as the loss function, but in practice, we use the log–loss function for
classification (the c terms) and the mean–squared error for regression (the b terms).
We can also have a neural network output the x and y coordinates of important points in
the image, landmarks. This is useful for tasks such as face recognition, since the landmarks
could be facial features such as the eyes, nose, and mouth. This can be achieved by using a
fully–connected layer with 2n outputs, where n is the number of landmarks.

3.1 Convolutional Implementation of Sliding Windows

The Sliding Windows Technique consists in training a neural network to recognise objects in
small windows of an image, and then sliding the window across an image to see if the object
is present. The technique can be repeated iteratively, where on each run the window size is
increased. This is a computationally expensive technique, since we need to run the neural
network multiple times.
Through a convolutional implementation, this method can be rendered feasible. The idea
is to use a convolutional layer to replace the fully–connected layer. This convolutional layer
will have a filter of size n ×n ×nc , where n is the size of the window, and nc is the number of
channels. The output of this layer will be a 1×1×1 tensor, which can be passed to a sigmoid
function to obtain the probability that the object is present in the window. This is clearly
presented in the following image:

Figure 12: Convolutional implementation of sliding windows, sourced from this lecture.

An issue with the convolutional implementation of sliding window is that it does not output
the most accurate bounding box coordinates. This is because the convolutional layer is not
fully–connected. To solve this, we can use a fully–connected layer to refine the coordinates,
which is done in the YOLO algorithm.
The basic idea behind this algorithm is to divide the image into a grid of S ×S cells, and then
for each cell, predict the probability that an object is present in the cell, the bounding box
coordinates, and the class of the object. The output of the algorithm is a S × S × (5B +C)

11

https://www.coursera.org/learn/convolutional-neural-networks/lecture/6UnU4/convolutional-implementation-of-sliding-windows

tensor, where B is the number of bounding boxes predicted per cell, and C is the number
of classes. The algorithm will assign the object to the grid cell where the centrepoint of the
object is found, which prevents duplicate counts of objects.
The function Intersection over Union (IoU) is used to determine how accurate the predicted
bounding box is. It is defined as:

IoU = Area of intersection

Area of union

By convention, a lot of CV algorithms use a threshold of 0.5 for the IoU.
One of the problems of object detection is that the algorithm may find multiple detections
of the same object. This is solved by using a technique called non–max suppression. The
algorithm is as follows:

1. Discard all boxes with pc ≤ 0.6.

2. While there are any remaining boxes:

a) Pick the box with the largest pc .

b) Discard any remaining box with IoU > 0.5 with the box selected in the previous
step.

If there are multiple classes, then the algorithm is run for each class separately.
Object detection, as described earlier, can only detect one object per grid. To solve this, we
can use a technique called anchor boxes. The idea is to modify the vector output of the
algorithm to be of the form: 

pc

bx

by

bh

bw

c1

c2
...

cn

pc

bx

by

bh

bw

c1

c2
...

cn
...



12

Where the first set of values corresponds to the first anchor box, and the second set of values
corresponds to the second anchor box. If there are multiple objects in the same grid, then the
algorithm will assign the object to the anchor box with the highest IoU, and the other object
to the other anchor box.
Let us put all of these concepts together to explain the YOLO algorithm more in detail. Ev-
ery training sample will be of dimensions 3×3× a ×5+ c, where a is the number of anchor
boxes, and c is the number of classes. The output of the algorithm will be of dimensions
3×3×a×(5+c), where the first 5 values correspond to the bounding box coordinates and the
probability that an object is present, and the last c values correspond to the probability that
the object belongs to each class.
The algorithm will make predictions by using a 3×3 grid, and for each cell, it will predict the
bounding box coordinates and the probability that an object is present. The algorithm will
assign the object to the anchor box with the highest IoU (non–max supression).

Another very influential idea in Computer Vision is Region Proposals (R–CNN): the idea is
to use a neural network to propose regions of an image where an object may be present, and
then use a second neural network to classify the object. This is a very computationally effi-
cient technique, since the second neural network only needs to run on the proposed regions,
and not on the entire image.
The original R–CNN algorithm was very computationally expensive, since it used a sliding
window technique to propose regions. This was solved by using a Convolutional Implemen-
tation of Sliding Windows, which is a convolutional layer that outputs the probability that an
object is present in a window.
The first neural network is called the Region Proposal Network (RPN), and it is a convolu-
tional neural network that takes as input an image, and outputs a set of bounding boxes and
the probability that an object is present in each bounding box, an algorithm known as seg-
mentation algorithm. The second neural network is called the Fast R–CNN, and it takes as
input the proposed regions, and outputs the class of the object.
There is even a Faster R–CNN algorithm, which uses a convolutional network to propose re-
gions.

Semantic Segmentation is another very important idea in Computer Vision. The idea is to
assign a class to each pixel in an image. This is different from Image Classification, where the
algorithm assigns a class to the entire image. The reason why we do this is because it allows
us to detect multiple objects in an image, and it allows us to detect objects that are partially
occluded. Semantic Segmentation will output a complete matrix full of labels, where each
label corresponds to a class — one per pixel. This is different from Object Detection, where
the algorithm will output the coordinates of bounding boxes and the class of the object in
each bounding box.
The architecture of a semantic segmentation algorithm is similar to that of a convolutional
neural network, except that, instead of eventually passing the output through a fully–connected
layer, we will make it become bigger and bigger, until it is the same size as the input image.
We achieve this through implementing transpose convolutions. Transpose convolutions are
the opposite of convolutions: instead of shrinking the image, they will expand it. The way

13

they work is multiplying each element of the image by a filter (which is a matrix), and then
projecting the results onto the output. Similar to regular convolutions, we can add padding
and strides to transpose convolutions. When the values of the multiplication of two different
entries in the image overlap, we sum them.
This is the architecture of a semantic segmentation algorithm:

3×3 conv, 64
3×3 conv, 64

2×2 max pool
3×3 conv, 128
3×3 conv, 128
2×2 max pool
3×3 conv, 256
3×3 conv, 256
3×3 conv, 256
2×2 max pool
3×3 conv, 512
3×3 conv, 512
3×3 conv, 512
2×2 max pool
3×3 conv, 512
3×3 conv, 512
3×3 conv, 512
2×2 max pool

Fully connected
Transpose conv, 512
Transpose conv, 512
Transpose conv, 512

2×2 upsample
Transpose conv, 512
Transpose conv, 512
Transpose conv, 512

2×2 upsample
Transpose conv, 256
Transpose conv, 256
Transpose conv, 256

2×2 upsample
Transpose conv, 128
Transpose conv, 128

2×2 upsample
Transpose conv, 64
Transpose conv, 64
Transpose conv, c


Where c is the number of classes.

14

This diagram illustrates the architecture of a semantic segmentation algorithm (U–Net):

Figure 13: U–Net, sourced from this lecture.

Notice that the dimension of the output is h×w×c, where h and w are the height and width
of the input image and c is the number of classes.

4 Special Applications: Face Recognition & Neural Style
Transfer

There are two big types of facial algorithms: Face Verification and Face Recognition. The
former refers to the task of verifying whether a person is who they say they are, and the latter
refers to the task of recognizing a person in an image.
The building blocks of a face recognition algorithm are high–accuracy face verification algo-
rithms. Thus, we will cover these first and then go on to proper face recognition algorithms.
One of the challenges of face recognition is that the algorithm must be able to recognise the
person given only one image of them. This is different from other applications, where the
algorithm is given many images of the object it must recognise. This is known as One–shot
Learning. To make this work, we need to train a similarity function that takes as input two
images and outputs a number between 0 and 1 that represents how similar the two images
are. If the output is smaller than a certain threshold τ, then the algorithm will output that the
two images are of the same people. Otherwise, it will output that they are of different people.
The similarity function d is trained using a Siamese Network. This is a neural network that
takes as input two images, and outputs a number between 0 and 1 that represents how similar
the two images are. The architecture of a Siamese Network is as follows:

15

https://www.coursera.org/learn/convolutional-neural-networks/lecture/Vw8sl/u-net-architecture-intuition

Figure 14: Siamese Network, sourced from this lecture.

As you can see, you will pass two different pictures through two convolution networka so
that they are encoded and then you will pass the two encodings through a fully–connected
layer to get the similarity score.
The objective in training a Siamese Network is to minimise the value of d given two pictures
of the same person, and maximise the value of d given two pictures of different people.
One way to learn the parameters of the CNN is to use the triplet loss function:

L (A,P, N) = max
(∥∥ f (A)− f (P)

∥∥2
2 −

∥∥ f (A)− f (N)
∥∥2

2 +α,0
)

It is called the triplet loss because your algorithm will be looking at three different pictures
each time: an anchor picture A, a positive picture P (of the same person as the anchor) and a
negative picture N (of a different person). The objective is to make the distance between the
anchor and the positive as small as possible, and the distance between the anchor and the
negative as big as possible, namely: ∥∥ f (A)− f (P)

∥∥2 +α≤ ∥∥ f (A)− f (N)
∥∥2∥∥ f (A)− f (P)

∥∥2 −∥∥ f (A)− f (N)
∥∥2 +α≤ 0

The α is a hyperparameter that determines how big the difference between the two distances
must be.
Thus, the loss function of the Siamese Network is:

mathcalL(A(i),P (i), N (i)) = max

(∥∥∥ f (A(i))− f (P (i))
∥∥∥2 −

∥∥∥ f (A(i))− f (N (i))
∥∥∥2 +α,0

)
And the overall cost function is:

J =
m∑

i=1
L (A(i),P (i), N (i))

Note that this is the Euclidean distance between the two encodings. It is also possible to use
the Cosine similarity:

L (A,P, N) = max

(〈
f (A), f (P)

〉∥∥ f (A)
∥∥∥∥ f (P)

∥∥ −
〈

f (A), f (N)
〉∥∥ f (A)

∥∥∥∥ f (N)
∥∥ +α,0

)

16

https://www.coursera.org/learn/convolutional-neural-networks/lecture/4smyS/siamese-network

Choosing A, P , and N during training is non–trivial: you want to choose triplets that are hard
to train on, i.e. triplets that are close to each other. If you choose triplets at random, then the
algorithm will not learn much, because it will not be too difficult to get the right answer.
In PyTorch, you can implement the triplet loss function as follows:

1 ’’’
2 Inputs:
3 tensors a, p, n of shape (N,D)
4 alpha: margin (scalar)
5 ’’’
6 triplet_loss = nn.TripletMarginLoss(margin =1.0, p=2)
7 anchor = torch.randn (100, 128, requires_grad=True)
8 positive = torch.randn (100, 128, requires_grad=True)
9 negative = torch.randn (100, 128, requires_grad=True)

10 output = triplet_loss(anchor , positive , negative)
11 output.backward ()

Another way to learn the parameters of a face recognition system is to treat it as a classifica-
tion problem. You can train a neural network to output a 128 dimensional vector encoding a
face, and then train a softmax classifier on top of that.

Figure 15: Face recognition as a classification problem, sourced from this lecture.

Other variations of the loss function, such as the Chi–square loss and the Contrastive loss
are also possible. This algorithm was presented in the FaceNet paper.

4.1 Neural Style Transfer

Neural Style Transfer is a technique that allows you to take the style of one image s and apply
it to another image c. In order to implement this, you need to look at the features that the
ConvNet is extracting from the images.
In the earlier layers, neurons tend to detect edges and simple shapes, while in the deeper
layers, neurons tend to detect more complex shapes. This is because each hidden unit is
looking at a larger patch of the image.
The first component of our neural style transfer algorithm is the cost function:

J (G) =αJcontent(C ,G)+βJstyle(S,G)

The first element of this function is the content cost function, which will make sure that the
generated image G has the same content as the image C . The second element, the style cost

17

https://www.coursera.org/learn/convolutional-neural-networks/lecture/xTihv/face-verification-and-binary-classification

function, will make sure that the generated image G has the same style as the image S. We
will weight these two costs with the hyperparameters α and β.
In order to generate a new image, what we do is the following:

1. Initialise the image G with random values.

2. Use gradient descent to minimise the cost function J (G). This will update the pixel
values of the image G .

This being said, we need to see how to define both the content and style cost functions. The
former is defined as follows:

Jcontent(C ,G) = 1

2×nH ×nW ×nC

∑
all entries

(a[l](C) −a[l](G))2

Where l stands for the layer in the network and a stands for activation. Notice that if you use
a hidden layer that is deeper in the network, the output will keep more of the content of the
original picture. Conversely, if you use a layer that is higher up in the network, the output will
keep less of the content of the original picture and more of the style.
The style cost function is defined as follows:

Jstyle(S,G) = 1

(2×n[l]
H ×n[l]

W ×n[l]
C)2

∑
k

∑
k ′

(G [l](S)
kk ′ −G [l](G)

kk ′)2

Where G [l](S) and G [l](G) are the Gram matrices of the images S and G respectively. The Gram
matrix is a matrix of dot products between the different filter activations. Thus, the definition
of the Gram matrix is:

G [l]
kk ′ =

n[l]
H∑

i=1

n[l]
W∑

j=1
a[l]

i j k a[l]
i j k ′

Where a[l]
i j k is the activation of the kth filter at position (i , j).

The Gram matrix is a way to measure the correlation between different filter activations. Cor-
relation refers to which high level features appear or do not appear together in an image.
Thus, we will compute the Gram matrix for both the style and generated images, and then
compute the style cost function.
The final step is to combine the content and style cost functions into a single cost function,
and then use gradient descent to minimise it.

18

	Foundations of Convolutional Neural Networks
	Deep Convolutional Models: Case Studies
	Practical Advice

	Object Detection
	Convolutional Implementation of Sliding Windows

	Special Applications: Face Recognition & Neural Style Transfer
	Neural Style Transfer

